International Journal of Engineering & Scientific Research

Vol.13 Issue 09, Sep 2025

ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

The Study of Short Account of Wronskian and Eigen values with matrix form

Binod Kumar Tiwari¹, Dr. Pratibha Yadav² Research Scholar, Associate Professor

¹'University Department of Mathematics, Magadh University, Bodhgaya

²Department of Mathematics, College of Commerce, Patna, M.U. Bodhgaya, Bihar

(India)

Abstract:

In the present paper we study the Wronskian and existence of eigenvalue problems in the case of ordinary linear differential equations with different examples and lemmas associated with matrix method, including certain boundary conditions. By using a necessary and sufficient condition that a set of 2n solutions with some basis of fundamental set of solutions. The numerical results are discussed in the illustrated examples. The important results are also discussed in the lemmas in this paper. The purpose of the study is to more clearly clarify the concept to apply Wronskian and eigenvalues in different cases.

1. Introduction

Let the matrix equation

$$(\mathbf{L} - \lambda)\phi = 0 \tag{2.1.3}$$

where λ is a parameter, real or complex. The Wronskian for the system (2.1.3) we consider

$$\psi_{j} \equiv \psi_{j}(x,\lambda) = \begin{bmatrix} u_{j_{1}} \\ u_{j_{2}} \\ \vdots \\ u_{j_{n}} \end{bmatrix} \equiv \begin{bmatrix} u_{j_{1}}(x,\lambda) \\ u_{j_{2}}(x,\lambda) \\ \vdots \\ u_{j_{n}}(x,\lambda) \end{bmatrix} j = 1,2,3....2n$$

be 2n-solutions of (2.1.3). Then the determinant

$$W_{x}(\psi_{1}, \psi_{2}, \dots, \psi_{2n})(\lambda) \equiv W\{\psi_{1}(x, \lambda), \psi_{2}(x, \lambda), \dots, \psi_{2n}(x, \lambda)\}$$

defined by

$$W_{x}(\psi_{1}, \psi_{2}, \dots, \psi_{2n})\lambda = \begin{vmatrix} u_{11} & u_{21}, \dots, u_{2n1} \\ u_{12} & u_{22}, \dots, u_{2n2} \\ \dots & \dots & \dots \\ u_{1n} & u_{2n}, \dots, u_{2nn} \\ u'_{11} & u'_{21}, \dots, u'_{2nn} \\ u'_{12} & u'_{22}, \dots, u'_{2nn} \end{vmatrix}$$

$$(2.1.4)$$

is called the Wronskian for the system (2.1.3) as it plays the same role for the system (2.1.3) as does the Wronskian in the case of ordinary linear differential equation. Bhagat [11] and Levinson [12] have studied the necessary and sufficient condition that the 2n- solutions $\psi_1, \psi_2, \dots, \psi_{2n}$ of (2.1.3) linearly independent is that $W_x(\psi_1, \psi_2, \dots, \psi_{2n})(\lambda) \neq 0$ from the following

Theorem

Consider

$$F \equiv F(x) = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} \text{ and } G \equiv G(x) \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}$$

where f_1 , f_2 ,..... f_n ; g_1 , g_2, g_n are functions of a be two vectors having continuous derivatives of second order. Then from the result

$$\phi_{K}^{T}L\phi j - (L\phi_{k})^{T}\phi_{j} = \left[\phi_{j}, \phi_{k}\right]' \text{ where } \phi_{j} \text{ and } \phi_{k} \text{ are the solutions of (2.1.3) we have }$$

$$G^{T}LF - F^{T}LG - [FG]'$$

Thus

$$\int_{a}^{b} (G^{T}LF - F^{T}LG)dx = [FG]_{a}^{b} = [FG](b) - [FG](a)$$
 (2.1.5)

This is the Green's Formula for our boundary value problem

Now if F and G are such that $[F \ G](b) - [F \ G](a) = 0$

Then

$$\int_{a}^{b} G^{T} L F dx = \int_{a}^{b} F^{T} L G dx \qquad (2.1.6)$$

the self adjointness condition

Let F and G be the solutions of (2.1.3) and satisfy the boundary conditions $aj_1\varphi_1+aj_2\varphi_1^1+aj_3\varphi_2+aj_4\varphi_2^1+....+aj_{2n-1}\varphi_n+aj_{2n}\varphi_n^1=0, j=1,2....n$

and
$$bj_1\phi_1 + bj_2\phi_1^1 + bj_3\phi_2 + bj_4\phi_2^1 + \dots + bj_{2n-1}\phi_n + bj_{2n}\phi_n^1 = 0$$

 $j = 1, 2, \dots n$

at x = a and x = b respectively. If the conditions are satisfied then by the theorem

$$[FG](b) = [FG](a) = 0$$

Let

$$\psi_{j}(x,\lambda) = \begin{bmatrix} uj_{1}(x,\lambda) \\ uj_{2}(x,\lambda) \\ \vdots \\ uj_{n}(x,\lambda) \end{bmatrix} j = 1,2,3.....2n$$

be 2n. solution of (2.1.3) for the same values of λ . Then the Wronskian $W_x(\psi_1, \psi_2,, \psi_n)(\lambda)$ is independent of x and depends only on λ .

Let

$$\mathbf{A} = \begin{bmatrix} \mathbf{u}_{11}' & \mathbf{u}_{12}' & \dots & \mathbf{u}_{1n} & \mathbf{u}_{11} & \mathbf{u}_{12} & \dots & \mathbf{u}_{1n} \\ \mathbf{u}_{21}' & \mathbf{u}_{22}' & \dots & \mathbf{u}_{2n}' & \mathbf{u}_{21} & \mathbf{u}_{22} & \dots & \mathbf{u}_{2n} \\ \mathbf{u}_{2n1}' & \mathbf{u}_{2n2}' & \dots & \mathbf{u}_{2nn}' & \mathbf{u}_{2n1} & \mathbf{u}_{2n2} & \dots & \mathbf{u}_{2nn} \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{u}_{11} & \mathbf{u}_{12} & \dots & \mathbf{u}_{1n} & -\mathbf{u}_{11}' & -\mathbf{u}_{12}' & \dots & -\mathbf{u}_{1n}' \\ \mathbf{u}_{21} & \mathbf{u}_{22} & \dots & \mathbf{u}_{2n} & -\mathbf{u}_{21}' & -\mathbf{u}_{22}' & \dots & -\mathbf{u}_{2n}' \\ \mathbf{u}_{2n1}' & \mathbf{u}_{2n2} & \dots & \mathbf{u}_{2nn}' & -\mathbf{u}_{2n1}' & -\mathbf{u}_{2n2}' & \dots & -\mathbf{u}_{2nn}' \end{bmatrix}$$

Then we have

$$\begin{split} & \left[\left[\left[\psi_r \psi_s \right], 1 \leq r; s \leq 2n \right] = \begin{bmatrix} \left[\psi_1 \ \psi_1 \right] \left[\psi_1 \ \psi_2 \right] \left[\psi_1 \ \psi_2 \right] \\ \left[\psi_2 \ \psi_1 \right] \left[\psi_2 \ \psi_2 \right] \left[\psi_2 \ \psi_{2n} \right] \\ \vdots \\ \left[\left[\psi_{2n} \ \psi_1 \right] \left[\psi_{2n} \ \psi_2 \right] \left[\psi_{2n} \ \psi_{2n} \right] \end{bmatrix} = AB^T \end{split}$$

Hence

$$\det_{1 \le r} \left[\left[\psi_r \psi_s \right] \right] = \det A. \det B$$

But
$$\det A = (-1)^{n^2} W_x(\psi_1, \psi_2,, \psi_{2n})(\lambda)$$

and
$$\det B = (-1)^n W_x(\psi_1, \psi_2,, \psi_{2n})(\lambda)$$

Hence,

$$1 \le r, s \le 2n \left[\left[\psi_r \psi_s \right] \right] = (-1)^{n(n+1)} \left\{ W_x (\psi_1, \psi_2, \dots, \psi_{2n})(\lambda) \right\}^2$$
i.e.
$$\det_{1 \le r, s \le 2n} \left[\left[\psi_r \psi_s \right] \right] = \left\{ W_x (\psi_1, \psi_2, \dots, \psi_{2n})(\lambda) \right\}^2$$
(2.1.7)

It follows from (2.1.7) that $W_x(\psi_1,\psi_2,....,\psi_{2n})(\lambda)$ is independent of x and depends only on λ since each $[\psi_r\psi_s]$ is so.

If $\phi_1, \ \phi_1, \dots, \phi_{2n}$ are boundary condition vectors defined in $[\phi_i \ \phi_j] = 0$ $1 \leq i, \ j \leq n$ and $[\phi_k \phi_\ell] = 0$ $n+1 \leq k, \ \ell \leq 2n$ and (2.1.7) we have

$$\left\{W_{x}(\phi_{1},\phi_{2},....,\phi_{2n}(\lambda)\right\}^{2}$$

$$\begin{bmatrix} \varphi_{1} \; \varphi_{n+1} \end{bmatrix} [\varphi_{1} \; \varphi_{n+2}] \dots [\varphi_{1} \; \varphi_{2n}] \\ [\varphi_{2} \; \varphi_{n+1}] [\varphi_{2} \; \varphi_{n+2}] \dots [\varphi_{2} \; \varphi_{2n}] \\ [\varphi_{n} \; \varphi_{n+1}] [\varphi_{n} \; \varphi_{n+2}] \dots [\varphi_{n} \; \varphi_{2n}] \end{bmatrix}^{2} (\lambda)$$

we define

$$\mathbf{D}(\lambda) = \begin{vmatrix} \left[\phi_{1} \ \phi_{n+1} \right] \left[\phi_{1} \ \phi_{n+2} \right] \dots \left[\phi_{1} \ \phi_{2n} \right] \\ \left[\phi_{2} \ \phi_{n+1} \right] \left[\phi_{2} \ \phi_{n+2} \right] \dots \left[\phi_{2} \ \phi_{2n} \right] \\ \left[\phi_{n} \ \phi_{n+1} \right] \left[\phi_{n} \ \phi_{n+2} \right] \dots \left[\phi_{n} \ \phi_{2n} \right] \end{vmatrix} (\lambda)$$
(2.1.8)

Hence

$$\left\{ W_{x} \left(\phi_{1}, \phi_{2}, \dots, \phi_{2n} \right) (\lambda) \right\}^{2} = \left\{ D(\lambda) \right\}^{2}$$
 (2.1.9)

Here D (λ) is an integral function of λ idependent of x and real for real λ . Hence in the complex λ -plane the zeros of D(λ) form an isolated set whose only limit point is at infinity. Consequently the zeros of D(λ) form an almost enumerable set. Hence D(λ) is not identically zero in x over [a, b] and consequently $W_x(\varphi_1, \varphi_2, \ldots, \varphi_{2n})(\lambda)$ is not identically zero in x over [a, b]. Hence the boundary condition vectors $\varphi_1, \varphi_2, \ldots, \varphi_{2n}$ are linearly independent over [a, b] and form a fundamental set for those values of λ for which D(λ) \neq 0 . If D(λ) = 0 for some λ , then $\varphi_1, \varphi_2, \ldots, \varphi_n$ are linearly dependent.

We now prove a theorem on the existence of eigen values for this, consider the necessary and sufficient condition that λ should be an eigen value is that it is a root of $D(\lambda)$ = 0

Suppose that
$$\lambda = \lambda_1, \ D(\lambda) \neq 0$$
 i.e. $W(\lambda) \neq 0$

Then $\phi_1, \phi_2, \dots, \phi_{2n}$ form a fundamental set for the differential system

$$\frac{d^{2}\phi_{1}}{dx^{2}} - A_{11}\phi_{1} - A_{12}\phi_{2} - \dots - A_{1n}\phi_{n} = \lambda(\phi_{1} + \phi_{2} + \dots + \phi_{n})$$

$$\frac{d^{2}\phi_{2}}{dx^{2}} - A_{21}\phi_{1} - A_{22}\phi_{2} - \dots - A_{2n}\phi_{n} = \lambda(\phi_{1} + \phi_{2} + \dots + \phi_{n})$$

$$\frac{d^{2}\phi_{n}}{dx^{2}} - A_{n1}\phi_{1} - A_{n2}\phi_{2} - \dots - A_{nn} \quad \phi_{n} = \lambda(\phi_{1} + \phi_{2} - \dots + \phi_{n})$$
 (2.1.10)

and any solution

$$\phi(\mathbf{x}, \lambda_1) = \begin{bmatrix} u_1(\mathbf{x}, \lambda_1) \\ u_2(\mathbf{x}, \lambda_1) \\ \vdots \\ u_n(\mathbf{x}, \lambda_1) \end{bmatrix}$$

of above equation can be expressed as $\phi(x,\lambda_1) = \sum_{j=1}^{2n} \alpha_j \phi_j(x,\lambda_1)$ where $\alpha_1,\alpha_2,\ldots,\alpha_{2n}$

are constants (real or complex) not all zero.

Let $\phi(x, \lambda_1)$ satisfy the boundary conditions

$$\[\theta(x,\lambda) \phi_j \left(\frac{a}{x}, \lambda \right) \] = 0 \quad j = 1, 2, \dots, n \text{ and}$$

$$\[\theta(x,\lambda) \phi_k \left(\frac{b}{x}, \lambda \right) \] = 0 \quad k = n+1, n+2, \dots, 2n$$

Then since $\lceil \dots, \phi_k(x, \lambda_1) \rceil$ is a linear operator

So,

$$\sum_{i=1}^{2n} \alpha_{j} \left[\phi_{j} \phi_{k} \right] = 0, \quad k = 1, 2, \dots, 2n$$
 (2.1.11)

The necessary and sufficient condition that (2.1.11) have a non trivial solution is that the determinant of the coefficients should vanish. i.e.

$$\det_{1 \le r, s \le 2n} \left[\left[\phi r, \phi_s \right] \right] \left(\lambda_1 \right) = 0$$

i.e.
$$D(\lambda_1) = 0$$
 by (2.1.7) and (2.1.9)

But $D(\lambda_1) \neq 0$. Hence the only solution of (2.1.10) is a trivial one. Therefore for $\lambda = \lambda_1$ no solution of (2.1.11)satisfying the boundary conditions

$$\left[\theta(\mathbf{x},\lambda)\,\phi_{\mathbf{j}}\left(\frac{\mathbf{a}}{\mathbf{x}},\lambda\right)\right] = 0, \ \mathbf{j} = 1,2,3....n \text{ and}$$
 (2.1.12)

$$\left[\theta(x,\lambda)\,\phi_k\left(\frac{b}{x},\lambda\right)\right] = 0, \ k = n+1, n+2, \dots 2n$$
 (2.1.13)

Consequently $\lambda = \lambda_1$ is not an eigenvalue.

Conversely, Let λ_1 be a root of $D(\lambda) = 0$

Then $W_x(\phi_1,\phi_2,...,\phi_{2n})(\lambda_1)$ is identically zero in x over [a, b]. Hence there exists a linear relation of the form

$$A_1\varphi_1(x,\lambda_1)+A_2\varphi_2(x,\lambda_1)+.....+A_n\varphi_n(x,\lambda_1)$$

$$= A_{n+1}\phi_{n+1}(x,\lambda_1) + A_{n+2}\phi_{n+2}(x,\lambda_1) + \dots + A_{2n}\phi_{2n}(x,\lambda_1)$$
 (2.1.14)

For all $x \in [a,b]$ where $A_1, A_2,...,A_{2n}$ are constants with an important results are such that not all $A_1, A_2,...,A_n$ are zero and not all of $A_{n+1}, A_{n+2},...,A_{2n}$ are zero. Then the vector,

$$\phi(x, \lambda_1) = A_1 \phi_1(x, \lambda_1) + A_2 \phi_2(x, \lambda_2) + \dots + A_n \phi_n(x_1, \lambda_1)$$
 (2.1.15)

Satisfies the system (2.1.10) and (2.1.14) it also satisfies the boundary conditions (2.1.12) and (2.1.13). Hence $\phi(x, \lambda_1)$ given by the above equation is an eigenvector and λ_1 is an eigenvalue.

References

- 1. Gubernatis J.E. and Booth T.E multiple external Eigen pair by the power method, theoretical division and applied physics Division, Los Alamos National Laboratory, Los Alamos M 87545 U.S.A. T.E. Booth, LA-UR 07 4046, 2008.
- 2. Parlett N.B, The symmetric Eigen value problem, Prentice-Hall,, Englewood Cliffs, NJ Reprinted as classics in Applied Mathematics 20, SIAM, Philadelphia, 1997.
- 3. Banarjee, Sand Chakrawarty, N.K, An eigen value problem associated with an nxn matrix differential operator, progress of Mathematics, B.H.U. Varanasi Vol-16 (1, 2) 1982
- 4. Sharma, D. and Bhagat, B. Eigen function expansions associated with a second order matrix differential equation, Ph.D. thesis (1979) Patna University.
- 5. Ince., E.L. ordinary differential equations Dover Publications (1956).
- 6. Kodaira, K. on ordinary differential equations of any even order and corresponding eigen function expansions, Amer. J. Math. 72 (1950) 502-44.
- 7. Titchmarsh, E.C. Eigen function expansions associated with second order differential equations part-I, Oxford (1946).
- 8. Reid, W.T. ordinary differential equations, Appl. Math Series, Oklahoma (1970).
- 9. Shaw, S. and Bhagat, B. On a second order matrix differential operator Proc. Indian Acad Sci., Indian 79A, 5(1974), 213-32.
- 10. Chakravarty, N.K. Some problems in eigen function expansions (I) quart. J. Math., (16) 16 (1965), 135-50.
- 11. Bhagat, B. Eigen function expansions associated with a pair of differential equations, Proc. National Inst. Sciences of India 35 A(1969), 161-74.
- 12. Coddington, E. A. and Levinson N. theory of ordinary differential, equations Mc. Graw Hill, New York (1958).