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Abstract:  

  In the present paper we study the Wronskian and existence of eigenvalue problems 

in the case of ordinary linear differential equations with different examples and lemmas 

associated with matrix method, including certain boundary conditions. By using a necessary 

and sufficient condition that a set of 2n solutions with some basis of fundamental set of 

solutions. The numerical results are discussed in the illustrated examples. The important 

results are also discussed in the lemmas in this paper. The purpose of the study is to more 

clearly clarify the concept to apply Wronskian and eigenvalues in different cases.     

1. Introduction  

  Let the matrix equation  

 (L ) 0           (2.1.3) 

where  is a parameter, real or complex. The Wronskian for the system (2.1.3) we consider  
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be 2n-solutions of (2.1.3). Then the determinant 
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is called the Wronskian for the system (2.1.3) as it plays the same role for the system (2.1.3) 

as does the Wronskian in the case of ordinary linear differential equation. Bhagat [11] and 

Levinson [12] have studied the necessary and sufficient condition that the 2n– solutions 

1 2 2n, .....   of (2.1.3) linearly independent is that 
x 1 2 2nW ( , ..... )( ) 0     from the 

following   

Theorem  

Consider  
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where f1, f2,…….fn; g1, g2…..,gn are functions of a be two vectors having continuous 

derivatives of second order. Then from the result  

T T

K k j j kL j (L ) ,
          where j and 

k are the solutions of (2.1.3) we have 

T TG LF F LG [F G]   

Thus  

  
b bT T

aa
(G LF F LG)dx F G     F G (b) F G (a)   (2.1.5) 

This is the Green’s Formula for our boundary value problem 

Now if F and G are such that [F  G ] (b) – [F  G] (a) = 0 

Then  

b b
T T

a a
G LFdx F LGdx        (2.1.6) 

the self adjointness condition  

  Let F and G be the solutions of (2.1.3) and satisfy the boundary conditions 
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at x = a and x = b respectively. If the conditions are satisfied then by the theorem    

  F G (b) [F G](a) 0   

Let  
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be 2n. solution of (2.1.3) for the same values of . Then the Wronskian 

x 1 2 nW ( , ,......, )( )     is independent of x and depends only on . 

Let  
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Then we have  
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Hence  
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Hence, 
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  It follows from (2.1.7) that 
x 1 2 2nW ( , ,....., )( )    is independent of x and 

depends only on  since each  r s   is so. 

      If 1, 1……2n are boundary condition vectors defined in [ij] = 0 

k1 i, j n and [ ] 0       n 1 k, 2n    and (2.1.7) we have  

  
2
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we define  
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Hence  

  
2 2

x 1 2 2nW , ,......, ( ) {D( )}           (2.1.9) 

  Here D () is an integral function of  idependent of x and real for real . Hence in 

the complex -plane the zeros of D() form an isolated set whose only limit point is at 

infinity. Consequently the zeros of D() form an almost enumerable set. Hence D() is not 

identically zero in x  over [a, b] and consequently 
x 1 2 2nW ( , ......, )( )     is not identically 

zero in x over [a. b]. Hence the boundary condition vectors 
1 2 2n, ......,    are linearly 

independent over [a, b] and form a fundamental set for those values of  for which 

D( ) 0   . If D( ) 0   for some , then 1,2 ….n are linearly dependent. 

  We now prove a theorem on the existence of eigen values for this, consider the 

necessary and sufficient condition that  should be an eigen value is that it is a root of D() 

= 0 

Suppose that  = 1, D( ) 0    i.e. W( ) 0   

Then 
1 2 2n, ,......,   form a fundamental set for the differential system  

  
2

1
11 1 12 2 1n n 1 2 n2

d
A A ...... A ...

dx


               

  
2

2
21 1 22 2 2n n 1 2 n2

d
A A ...... A ...

dx


               

…………………………………………………………. 

2

n
n1 1 n2 2 nn n 1 2 n2

d
A A ...... A ( .... )

dx


              (2.1.10) 

and any solution  
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of above equation can be expressed as  
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      where 
1 2 2n, ......  

are constants (real or complex) not all zero.  

Let 
1(x, )  satisfy the boundary conditions 
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Then since  k 1........ x,    is a linear operator  

So, 
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  The necessary and sufficient condition that (2.1.11) have a non trivial solution is that 

the determinant of the coefficients should vanish. i.e.  

    s 1
1 r,s 2n

det r, 0
 

       

i.e.   1D 0   by (2.1.7) and (2.1.9) 

  But  1D 0.   Hence the only solution of (2.1.10) is a trivial one. Therefore for  

= 1 no solution of (2.1.11)satisfying the boundary conditions  
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       

  
  and   (2.1.12) 

  k

b
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Consequently  = 1 is not an eigenvalue.  

Conversely, Let 1 be a root of D( ) 0   

Then 
x 1 2 2n 1W ( , ,...., )( )    is identically zero in x over [a, b]. Hence there exists a linear 

relation of the form  

 
1 1 1 2 2 1 n n 1A (x, ) A (x, ) ..... A (x, )          
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n 1 n 1 1 n 2 n 2 1 2n 2n 1A (x, ) A (x, ) .... A (x, )              (2.1.14) 

For all x [a,b] where A1, A2,….,A2n are constants with an important results are such that 

not all A1, A2……An are zero and not all of An+1, An+2……..,A2n are zero.  

Then the vector, 

1 1 1 1 2 2 2 n n 1 1(x, ) A (x, ) A (x, ) .... A (x , )             (2.1.15) 

Satisfies the system (2.1.10) and (2.1.14) it also satisfies the boundary conditions (2.1.12) 

and (2.1.13). Hence 
1(x, )  given by the above equation is an eigenvector and 1 is an 

eigenvalue.  
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